
J .  Bluid Mech. (1974), vol. 63, part 4, p p .  625-634 

Printed in Great Britain 
625 

The radiation and scattering of surface 
waves by vertical barriers 

By D. PORTER 
Department of Mathematics, University of Reading, England 

(Received 9 August 1973) 

A train of small-amplitude surface waves is incident normally on an arbitrary 
arrangement of thin barrierslying in a vertical plane in deep water. Each barrier 
is allowed to make small rolling or swaying oscillations of the same frequency as 
that of the incident wave. The boundary-value problem for the consequent fluid 
motion, assumed two-dimensional, is solved exactly using a technique which 
enables the amplitudes of the scattered waves far from the barriers to be readily 
determined. Reference is made to the associated wave radiation problem and to 
the calculation of forces and moments on the barriers. 

1. Introduction 
The two-dimensional scattering and radiation of surface waves by various 

configurations of thin barriers lying in a vertical plane in deep water have been 
investigated by several authors. The case of a submerged semi-inkite barrier 
was considered by Dean (1945) and Ursell (1947). Various aspects of a single 
surface-piercing barrier have been treated by Haskind (1948, 1959), Levine & 
Rodemich (1958) and Ursell(l947,1948). Evans (1970) solved the problem for a 
single submerged oscillating barrier and Porter (1972) investigated the trans- 
mission of waves through a gap in a semi-infinite barrier. Two authors have con- 
sidered the general problem of an arbitrary number of barriers: Lewin (1963) 
the scattering problem and Mei (1966) associated initial-value problems. 

Problems of this type are generally solved by the use of a reduction technique. 
Either the so-called reduced potential is invoked at  the outset, or a formulation is 
adopted which leads to an integral equation. In  the latter case, the reduction 
manifests itself in the form of a differential operator which must be applied 
to the integral equation to render i t  amenable to standard solution techniques. 
Whichever of these two basic approaches is employed, it is ultimately necessary 
to establish that the solution of the reduced problem does in fact satisfy the 
problem as posed in its unreduced form. In  the case of the integral-equation 
formulation, for instance, the equivalence of the original equation and its reduced 
counterpart must be demonstrated. The solution of the reducedproblem contains 
arbitrary constants which are, in fact, determined in the process of satisfying the 
original problem. In practice, the determination of constants in this way involves 
a considerable amount of detailed manipulation, especially for more complicated 
barrier arrangements. Thus, quantities of prime physical interest, the transmis- 
sion and reflexion coefficients, are not easily found. 
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In  this paper, an alternative to the reduction process is presented. It has the 
advantage that the amplitudes of the scattered waves are found with a minimum 
of detailed analysis. This is achieved because a standard type of singular integral 
equation is obtained directly, no arbitrary constants being generated in its solu- 
tion. Rather, certain solvability conditions must be complied with and these, 
together with a set of requirements a t  the barrier edges, serve t o  determine all 
unknown quantities. 

The basis of the technique is taken from a paper by Williams (1966), who used 
it in rather a different manner to solve the scattering problem for a fixed surface- 
piercing barrier. Williams made use of properties of a weakly singular Volterra 
integral equation, this approach being particularly suited to the case of a single 
barrier. 

The problem posed is the general one of a wave train incident on an arbitrary 
arrangement of barriers, which are allowed to perform small rolling or swaying 
oscillations. Thus, all the configurations previously considered are included here, 
and the transmission and reflexion coefficients for several of these are calculated 
by way of illustration. A solution for the case of wave radiation by the moving 
barriers in otherwise still water is an immediate consequence, and the calcula- 
tion of wave forces and moments on the barriers is mentioned, including use of the 
Haskind relations. 

2. Formulation 
Perfect fluid in irrotational motion occupies the region y 3 0, the x axis lying 

in the undisturbed free surface. A train of small-amplitude surface waves of 
angular frequency CT is supposed to be travelling from x = - 00. The motion of the 
fluid can be described by the velocity potential 

@(x, y, t )  = 2{e-ivt$(x, !/I), 
where, making the usual assumptions of linearized theory, Q(x, y) must satisfy 

It is remarked that, although the effect of surface tension is omitted in the 
present formulation, an extension of the ensuing method can be developed to 
incorporate it. 

In  the absence of obstacles in the fluid, it  is convenient to take the solution for 

I = -iga/a, 
$@> Y) as 

$(x,  y) = I$o(x, y), $o(x,y) = ei~x-uu,  

corresponding to the incident elevation 

y(x, t )  = a cos (ax - d). 

Suppose now that the wave train is partially reflected by n thin barriers lying 
in x = 0 and occupying the intervalsBi: ui < y 6 b j  (j = i , 2 ,  . . .,n). Each barrier 
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B, makes small rolling oscillations of angular amplitude w j  and angular frequency 
Q about a fixed point cj. The normal velocity of a point on the barrier is given by 

a a p x  = crW,(y-ccj) cos ( d + B j ) ,  y€Bj, 

the linearization being valid provided that wi < 1 and that max I (y - ci) oil is 
O(a) for yell,. The constant 8, is included to allow the barrier to oscillate with 
an arbitrary phase. The case of small translational oscillations (sway) of the 
barrier B j  is achieved by allowing cj + co and w j  + 0 in such a way that c j o j  
remains finite. 

Inclusion of the barriers therefore requires that 

a$/ax = moj(y-c,)e-%, x = O * ,  y e B j  (j  = 1 ,2 ,  ... m ) ,  (2.4) 

together with the radiation condition, which implies that 

Here R and T are the unknown constants we are primarily seeking. The function 
9 and its first derivatives must be continuous across x = 0, YEG,  where G de- 
notes the aggregate of the gaps between the barriers. That is, 

n f l  

j=1 
G =  U G,, 

where 

GI = (O,a,), Gn+, = ( b , , ~ )  and Gj+l = (bj,uj+J for j = 1,2,  ..., n- 1. 

It is well known that in problems of this type the fluid velocities necessarily 
possess integrable singularities at  the ends of the barriers. Specifically, 

a$/ar N r - y ,  r + 0, 0 < y < I ,  (2.6) 

where r denotes the distance from a point in the fluid to any of the edges. 
We now consider $ as consisting of two parts : the first representing the solution 

when a fixed barrier occupies x = 0, y 3 0 (the incident wave being totally reflec- 
ted) and the second accounting for the presence of gaps in this barrier. Continuity 
of the normal fluid velocity across x = 0 indicates that this second part must be 
an odd function of x. (See Lamb (1932, p. 517)) where this device is usedin a simi- 
lar acoustic problem.) 

Thus we write 

and seek the solution for $(x,y) in x < 0. Obviously 4 must satisfy (2.1) off 
the barriers, (2.2)) (2.3) and 

$/ax = crwj(y - cj) e-%, x = 0, y E Bj  ( j  = 1,2,  . . ., n). (2.8) 
40-2 
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Reference to (2.5) reveals that we require 

&x, 9) - qhl( - x ,  y), x -+ -a, (2.9) 

and that R + T = I. The continuity of a$/ax across x = 0 for y E G is guaranteed 
by (2.7)) and q5 and a#/ay are continuous there if 

(2.10) 

Invoking the idea implied by Williams (1966), we introduce a function I)(., y) 
defined by 

q p y  - 4 = q4j( - x, y) + i%, y), x G 0. (2.11) 

It follows that (2.9) is satisfied if 

+, a$/ay-to, x+ -a. (2.12) 

Further, if a2$/ax2 + az$/aty = 0, x < 0, y 2 0, (2.13) 

then 6 is also harmonic in that region. The free-surface condition (2.2) on 4 then 
gives, on using (2.12), 

I)(x,O) = 0,  x < 0. (2.14) 

Equations (2.8) and (2.10) reveal that we require 

i?$(O,y)/ax =fj(y) = F j e ~ ~ + ~ i T e - ~ U -  ((TWj/"2)e-iY{(y-ccj)a+ 11, 

~ E B ,  ( j  = 1,2, ..., n), (2.15) 

$(O,y) = hj(y) = ~ j e ~ ~ + ( 2 ~ ) - l ( ~ - ~ ) e - ~ ~ ,  y € G j  ( j= l , Z , , . . , n + l ) ,  (2.16) 

where Fj and H j  are constants of integration. To satisfy (2.3) we impose 

lV$J --f 0, y --f a, (2.17) 

and note that this implies that H,,, = 0, and hence that 

$(O,y) e-ay > y+m. (2.18) 

An important property of the function $, revealed by (2.6) and (2.1 l), is that its 
first derivatives must be bounded at the ends of the barriers. Also, it is to be 
noted that $(O,y) and a$(O,y)/ay must be continuous across the ends of the 
barriers in order that $(O,y) (and hence the first-order pressure) also has this 
property. Thus, the expressions for 4 on the barriers, when evaluated at  their 
ends, must be compatible with the corresponding values given by (2.16)) 

$(O,Uj) = h&), $ ( O J j )  = h,+l(bj) ( j  = 192, ...,n ). (2.19) 

It is evident from the foregoing formulation that the requirements defining 
q!r are sufficient to generate a velocity potential q5 which satisfies all the prescribed 
conditions. As was remarked by Williams in his particular problem, a proof that 
the conditions on + are also necessary is superfluous, since the posed boundary- 
value problem for $ has a, unique solution (see John 1948). 
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3. Determination of $(x, y) 

We determine $ by constructing an integral equation readily solvable by 
standard techniques. To this end, we note that an appropriate Green's function 
is 

where 6 ( x ,  315, q )  = ( - 1/27r) log ((x - tJ2 + (y - q)2)*. In particular 

G ( x , y l S , r )  = ~ ( x , Y I S , r ) + Q ( ~ j Y l - L  -r)-Q(wl -S,r)-Q(%Yl6 -rL 

G(X,Ylg-,O) = G(x,Yp,y) = 0. 

Application of Green's theorem to the function G and $ in x < 0, y 2 0 yields 

whence 

Integration by parts, using (2.14), (2.18) and the fact that $ ( O , q )  is everywhere 
continuous, easily leads to 

in which the integral is to be interpreted as a Cauchy principal value, as are sub- 
sequent singular integrals. Thus we obtain the singular integral equation 

where 

(3.2) 

(3.3) 

f ( Y )  =f,(Y),  FB,; ?4Y) = k,(Y), W G j .  
The solution of (3.2) for a~(O,r)/@, required to be bounded at  all ends of B, 

is obtained using the method expounded by Muskhelishvili (1963). Thus, an 
appropriate Carlemann function is introduced and use is made of the Plemelj 
formulae to deduce an equivalent Riemann-Hilbert probIem, the details in- 
volved being similar to those in Porter (1972).  The solution of the Riemann- 
Hilbert problem can be determined by reference to Muskhelishvili. 

We note a t  this point that there are three special cases of the problem posed 
hereto. Although the basic steps in the determination of 9 are the same in all 
these cases, each requires individual attention in matters of detail and for chrity 
we cite the cases separately. 

Case 1. The problem as posed: n submerged barriers, each of$nite length. Since 
$(x, y )  must satisfy (2.14) and (2.17) we have 

HI = - (I - T)/2a, Hn+l = 0. 

The remaining unknown constants are Fl,F2 ,..., Fn, H, ,..., H, a.nd T. The 
appropriate solution of (3.2),  namely 



630 D. Porter 

exists provided that the so-called solvability conditions 

are satisfied. These n conditions are a direct consequence of the fact that the 
solution is bounded a t  all ends of B. In  (3.4) and (3.5) we have written 

'Ib 

&(Y) = l-I (Y2 -a3 (Y2-%) .  
p = l  

The meaning of (R,(y))B accords with the convention adopted by Muskhelishvili 
(ZOG. cit .) .  Thus, introducing the complex variable 5 = y + iv we define 

(Rl(Y))& = lim (Wm 
v+o + 

where (R,(c))* is understood to be that branch which is analytic in the 6 plane 
cut along - bi < y Q -a j  and ai < y < bi (j = 1,2, ..., n) and for which 

(R,(c))a as I[( +. 0. 

The same meaning will be attached to similar branch functions occurring here- 
after. 

On inserting (3.3) into (3.4), we note that it is permissible to reverse the order 
of the resulting repeated integral. Further, contour integration and use of the 
Plemelj formulae reveal that 

27 d r  - ni/(R, (Y))*, YE G, 
!B (-%(r))' (Y"7') = [ O ,  y € B .  

Hence 

(3.6) 
Similar manipulation reduces (3.5) to 

Thus, the value of $(O, y) on each barrier is found by integrating (3.6), and making 
use of the end conditions (2.19). In particular, we must have 

(k = 1,2, ..., 91,). (3.8) 

The requirements (3.7) and (3.8) together constitute 2% equations in the 2n 
unknown constants listed previously; in particular the quantitiesR and T are now 
determined in principle. 
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It can be shown that the n relations (3.8)) added together, reduce to a further 
expression of the type (3.7) with Ic = n. Thus we may replace (3.7) and (3.8) by 
the 2n equivalent requirements 

Case 2. The uppermost barrier intersects the f ree  surface; that is, a ,  = 0 and 
G, is omitted. We assume that the fluid velocity is bounded at  the point (0,O). 
Equations (2.14) and (2.17) give 

F' = mole-%( 1 - oL',)/a2 - QiT, H,,, = 0. 

The complete solution for $ ( O ,  y), Y E  B, can be found either by applying the limit- 
ing process a, + 0 to case 1, or by constructing the appropriate solution of (3.2) 
and proceeding as in case 1. By each method we find that 

where &(y) = R1(y)/(y2-a:). The constants F2, ..., F,, H,, ..., H, and T are 
determined from 

Case 3. The deepest barrier extends in$nitely far into the $uid; b, = CQ, on = 0, 
G,+l is omitted, H, = - ( I  - T)/2a and Fn = 0. The solution of (3.2) must tend to 
zero as y -+ 00 on B,. It can, after some manipulation, be written in the form 

with solvability conditions 

whereR3(y) = R1(y)/(y2- b i ) .  By using (3.13), (3.12) can bewrittenin an alterna- 
tive form in which R3 is replaced by RJR,, where 

n 

p=l  
= (Y2-ai), Rb(Y) = R3(y)/Ra(y)- 
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The end conditions are 

(k = 1,2,  ..., n- l), (3.14) 

(3.15) 

If these n relations are added we obtain, not a further condition as in cases 1 
and 2, but an identity. We conclude that (3.15) is identically satisfied if (3.14) 
are satisfied. The unknown constants Fly . . . , H,, . . . , H, and T are found from 
(3.13) and (3.14). 

Case 4. The aggregate of cases 2 and 3 in which a, = 0, b, = 00 and w, = 0. We 
omit G, and Gn+l and have 

Fl = vw,e-+i ( I  - aCl)/a2 - &iT, Fn = 0. 

The solution for $(O,  y), ~ E B ,  can be found along the lines indicated in case 3, 
or by taking the limit a, + 0 in that case. It is found that 

where R4(y) = R3(y)/(y2 - a",. The constants F,, . . . &-,, H,, . . . H, and T are found 
from 

4. Particular cases 
The simplest examples of each of cases 1-4 have previously been examined, 

as noted in $1. We briefly indicate the use of the results obtained in the previous 
section by reference to these particular problems. 

(a)  A subnaergedfixed barrier (case 1, n = 1). Here 

hl(y) = - ( I -  T) sinh (ay) /a, h,(y) = ( I  - T )  ecay/2a, 

f,(y) = F,eaY + &iTe-a*, Rl(y) = (yz - a,") (y2 - b:). 

The two constants Fl and Tare determined by elementary manipulation from the 
relevant conditions, (3.9), namely 
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(b)  A surface-piercingjixed barrier (case 2, n = 1). Here 

fl(y) = - iT sinh (ay), h2(y) = (I - T )  e-au/2a. 

The quantity T is found from the only appropriate condition (3.1 1), 
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whence we directly obtain 

T = I K ,  (a ,  bl)/{K,(abi) - =iIi(abJ}, 

where 2; and K ,  are modified Bessel functions of the first and second kinds re- 
spectively. 

( c )  A submergedfixed semi-injnite barrier (case 3, n = 1) .  In  this case 

fl(y) = +iTe-ay, h,(y) = - (I - 2') sinh (ay)/a 

and T is defined by 

that is, 

where I, and KO again denote modified Bessel functions. 

T = InIo(~l)/{n-s,(aa,)  - i & ( 4 ] ,  

( d )  A gap in aJixed semi-in$nite barrier (case 4, n = 2) .  Here 

fl(y) = - iT sinh (ay ) ,  f,(y) = &iT e-au, h,(y) = H2eau + ( I  - T )  e-"v/2a, 

R4M = (Y2 - b2,) (Y2 - a%). 

The values of H, and T are determined from the pair of simultaneous equations 

In all instances, agreement is obtained with previous calculations. 

5. Conclusion 
In  each of the cases, unique expressions for $(O,y) and a$(O,y)/ay are found 

on the barriers. The value of $(x, y) off x = 0 can be found using (3.1). In  particu- 
lar, for the scattering problem posed, the amplitude and phase of the outgoing 
waves are determined via the solution of an explicit system of algebraic equations. 
The case of waves radiated by the rolling or swaying barriers in otherwise still 
fluid is obviously achieved by setting 1 = 0 (R = - T) throughout. 

Since $(O,y) is thus known on the barriers, the first-order and second-order 
mean (time-averaged over a wave period) horizontal forces and moments on the 
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barriers can readily be calculated (see, for example, Evans (1970), in which such 
calculations are made for a single submerged barrier). It is of interest to  note 
that, in case 1, the second-order mean horizontal force on thejth barrier assumes 
the particularly simple form 

2 q 2 )  = pa29{I(Hj - Hj+l)}. 

Thus the net force on all the barriers is 

j = 1  

This result was obtained by Evans for the single barrier. It can be shown that 
(5.1) also holds for the three limiting versions of case 1. 

We remark that knowledge of the far-field waves radiated by the barriers in 
shtes of sii.ay and roll, readily found by the above method, are sufficient to 
calculate the net first-order horizontal force and net moment for cases 1 and 2. 
This is achieved by making use of the Haskind relations discussed in, for example, 
Newman (1972). Thus, for instance, it is a straightforward matter to produce these 
quantities for cases 1 and 2 with ?z = 1, agreement being obtained with Evans 
(1970) and Haskind (1959). 
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